8 ми контактный разъем питания. Распиновка разъемов компьютерного блока питания. Переходник с разъёма для периферийных устройств на SATA

Кроме разъёмов для материнской платы, все блоки питания также оснащены различными дополнительными коннекторами, большинство из которых предназначено для питания дисковых накопителей и других периферийных устройств , например, мощной видеокарты. Большинство периферийных разъёмов, в свою очередь, соответствуют отраслевым стандартам для того или иного форм-фактора. В данной части нашего материала мы рассмотрим, какие дополнительные разъёмы вы можете встретить в своём ПК.

Разъём питания периферийных устройств

Возможно, самый распространённый тип разъёма, который можно встретить на всех БП, это коннектор питания периферийных устройств, который также часто называют разъёмом питания дисковых накопителей. То, что мы понимаем под данным типом разъёма, впервые появилось в блоках питания AMP в серии БП и называлось разъёмом MATE-N-LOK, но с тех пор как он начал производиться и продаваться компанией Molex, он также начал называться "разъём Molex", что не совсем корректно.

Чтобы определить расположение контактов, внимательно посмотрите на разъём. Как правило, в правой части вилки имеется пластиковый выступ и ключ, что необходимо для правильной фиксации разъёма в гнезде. На следующей схеме изображён стандартный разъём с ключом на вилке. Именно такой разъём используется для питания дисковых накопителей (и не только):

Разъём питания периферийных устройств

Данный разъём использовался на всех ПК, начиная с оригинальной модели IBM PC и заканчивая современными системами . Он наиболее известен как разъём для дисковых накопителей, однако также используется в некоторых системах для дополнительного питания материнской платы, видеокарты, вентиляторов охлаждения и любых других компонентов ПК, которые могут использовать напряжение +5 В или +12 В.

Это 4-контактный разъём, имеющий четыре контакта круглой формы, расположенные на расстоянии 5 мм друг от друга и рассчитанные на ток до 11 А на каждый. Так как разъём включает один контакт +12 В и один +5 В (два другие - заземление), максимальная мощность тока через разъём достигает 187 Вт. Вилка разъёма имеет около 2 см в ширину и её можно подключать к большинству дисковых накопителей и некоторых других компонентов ПК. На следующей таблице мы приводим назначение контактов на данном разъёме:

Контакты на разъёме питания для периферийных устройств
Контакт Сигнал Цвет Контакт Сигнал Цвет
1 +12 V Жёлтый 3 Gnd Чёрный
2 Gnd Чёрный 4 +5 V Красный

Разъём питания флоппи-дисководов

В середине 1980-х впервые появились дисководы для магнитных дисков 3,5 дюйма и тогда стало понятно, что для них нужен более компактный разъём питания. Ответом стало то, что сегодня известно как разъём питания флоппи-дисководов, который был разработан AMP как часть EI-серии (Economy Interconnection - экономичное подключение). Эти разъёмы применяются для питания небольших дисковых накопителей и устройств, и имеют те же контакты +12 В, +5 В и заземление, как и большой разъём для периферии. Расстояние между контактами в данном типе вилки составляет 2,5 мм, а сама вилка примерно в половину меньше большого разъёма. Все контакты рассчитаны на 2 А каждый, так что максимальная мощность тока по данному разъёму составляет всего 34 Вт.

В следующей таблице приводится конфигурация контактов на разъёме питания флоппи-дисководов:

Контакты на разъёме питания флоппи-дисков
Контакт Сигнал Цвет Контакт Сигнал Цвет
1 +5 V Красный 3 Gnd Чёрный
2 Gnd Чёрный 4 +12 V Жёлтый

Разъём питания периферийных устройств и его младший собрат имеют универсальную компоновку контактов, в чём можно убедиться на следующей схеме:

Разъём питания периферийных устройств и разъём для флоппи-дисковода

Расположение контактов на разъёме для флоппи является зеркальным, по сравнению с большим разъёмом для периферийных устройств. При использовании переходника с одного типа разъёма на другой следует проявить осторожность и не забывать, что в этом случае красный и жёлтый провода меняются местами.

Первые блоки питания оснащались всего двумя разъёмами для периферии, тогда как современные БП имеют четыре и более больших разъёмов и один или два разъёма для флоппи-дисководов. В зависимости от мощности и назначения, некоторые БП имеют по восемь и даже более разъёмов для периферийных устройств.

Если вы используете много жёстких дисков или иных устройств, нуждающихся в дополнительном питании, можно использовать Y-образный разветвитель, а также переходник с большого разъёма на малый. Разветвитель позволяет превратить один разъём питания периферийных устройств для подключения к нему сразу двух накопителей, а с переходником вы можете использовать большой разъём для питания флоппи-дисковода. Если вы используете несколько переходников, удостоверьтесь, что общая мощность блока питания является достаточной. Разъёмы, подключённые к разветвителю, по суммарной нагрузке не должны превышать возможности одного разъёма.

Разъём питания Serial ATA

Подавляющее большинство современных жёстких дисков и все SSD оснащены разъёмом питания SATA. Так что, если несколько лет назад коннекторы SATA на БП были некой приятной опцией, то на новых блоках питания они предусмотрены в обязательном порядке. Разъём питания SATA (Serial ATA) - особый 15-контактый разъём, в котором используется всего пять проводов, что означает, что к одному проводу подключается по три контакта на разъёме. Общая мощность питания по такому коннектору точно такая же, как у обычного разъёма для периферии, но SATA-кабель заметно тоньше.


Разъём питания SATA

В разъёме питания SATA каждый провод подключён к трём контактам, причём нумерация проводов не соответствует нумерации контактов. Если ваш блок питания не оснащён разъёмами питания SATA, можно использовать переходник с обычного разъёма для периферийных устройств. Однако такие переходники не обеспечивают напряжение по линии +3,3 В. К счастью, это не является проблемой для большинства устройств SATA, так как они не используют линию +3,3 В и используют только напряжения +12 В и +5 В.


Переходник с разъёма для периферийных устройств на SATA

Разъём дополнительного питания видеокарт PCI-E

Спецификация ATX12V 2.x подразумевает использование нового 24-контактного разъёма питания материнской платы, который обеспечивает больше энергии для питания различных контроллеров на плате и карт PCI-E. Спецификация рассчитана на дополнительную мощность 75 Вт непосредственно для слота PCI-E x16 и такой мощности, в принципе, хватает для многих видеокарт со средней производительностью. Но производительные графические карты, как правило, нуждаются в более высоком уровне питания. По этой причине группа разработчиков PCI-SIG (Special Interest Group) представила два стандарта для обеспечения дополнительного питания видеокарт PCI-E , которые предполагают использование следующих разъёмов:

  • PCI Express x16 Graphics 150 W-ATX - спецификация издана в октябре 2004 года. Используется дополнительный 6-контактный (2х3) коннектор, который обеспечивает дополнительную мощность 75 Вт. Общая мощность по слоту PCI-E x16 достигает 150 Вт.
  • PCI Express 225 W/300 W High Power Card Electromechanical - спецификация опубликована в марте 2008 года. Предполагает использование 8-контактного (2х4) дополнительного разъёма питания, обеспечивая дополнительную мощность 150 Вт. Общая мощность составляет 225 Вт (75+150) либо 300 Вт (75+150+75).

К видеокартам, требующим ещё больше энергии, можно подключать сразу несколько разъёмов:

Конфигурации разъёмов дополнительного питания PCI-E
Максимальная мощность Конфигурация доп. питания
75 Вт Не используется
150 Вт 1 х 6-pin
225 Вт 2 х 6-pin либо 1 х 8-pin
300 Вт 1 х 8-pin + 1 x 6-pin
375 Вт 2 x 8-pin
450 Вт 2 x 8-pin + 1 x 6-pin

Карт PCI Express обеспечивается с помощью коннекторов 6-pin (2х3) либо 8-pin (2х4) Molex Mini-Fit, снабжённых вилкой типа "мама", которая подключается непосредственно к видеокарте. Для справки, данные разъёмы похожи на Molex 39-01-2060 (6-контактный) и 39-01-2080 (8-контактный), но в обоих используется иные ключи, чтобы предотвратить возможность их ошибочной установки в разъём +12 В на материнской плате. На следующей схеме представлена компоновка разъёмов, в том числе со стороны вилки. Обратите внимание на сигнал "sense" по контакту pin 5 - он позволяет графической карте определить, подключён ли разъём. Без надлежащего уровня питания карта может отключиться или работать в режиме ограниченной функциональности. Также обратим внимание, что контакт pin 2 обозначен в таблице как N/C (No Connection) согласно стандартной спецификации, но в большинстве блоков питания, судя по всему, на него также подводится напряжение +12 В.


6-контактный разъём дополнительного питания PCI-E 6 pin (2х3), рассчитанный на мощность 75 Вт


Разъём 6 pin (2x3) дополнительного 75-Вт разъёма для питания видеокарты PCI-E
Цвет Сигнал Контакт Контакт Сигнал Цвет
Чёрный GND 4 1 +12 V Жёлтый
Чёрный Sense 5 2 N/C -
Чёрный GND 6 3 +12 V Жёлтый

Конфигурация контактов на 8-контактном разъёме дополнительного питания PCI-E приведена на схеме ниже. Обратите внимание на наличие дополнительного напряжения +12 В на контактах pin 2 и целых два сигнала "sense" по контактам pin 4 и pin 6, что позволяет карте определять, какой разъём подключён - 6-контактный или 8-контактный - либо подключение отсутствует.


8-контактный разъём дополнительного питания PCI-E 8 pin (2х4), рассчитанный на мощность 150 Вт


Разъём 8 pin (2x4) дополнительного 150-Вт разъёма для питания видеокарты PCI-E
Цвет Сигнал Контакт Контакт Сигнал Цвет
Чёрный GND 5 1 +12 V Жёлтый
Чёрный Sense0 6 2 12 V Жёлтый
Чёрный GND 7 3 +12 V Жёлтый
Чёрный GND 8 4 Sense1 Жёлтый

Конструкция обоих разъёмов обеспечивает обратную совместимость: разъём 6 pin можно подключить к гнезду 8 pin. Таким образом, если ваша графическая карта имеет гнездо для 8-контактного коннектора, но блок питания оснащён только разъёмом 6 pin, то его можно подключить к карте, просто сдвинув относительно гнезда, как это показано на рисунке. Вилка имеет конструкцию ключей, предотвращающую установку в некорректной позиции, но при подключении разъёма следует избегать чрезмерных усилий, что может привести к повреждению карты.


Подключение 6-контактного разъёма к гнезду 8 pin на графической карте

Сигнальные контакты расположены таким образом, что видеокарта сама распознает, какой тип разъём подключён к гнезду и, таким образом, какая мощность ей доступна. Например, если видеокарта требуется полных 300 Вт и она оснащена двумя гнёздами 8 pin (либо 8 pin + 6 pin), но вы используете два шестижильных разъёма, карта определит, что может использовать только 225 Вт и, в зависимости от конструкции и прошивки, может либо отключиться, либо будет работать в режиме ограниченной функциональности.

Благодаря специальному ключу на вилке, 8-контактный разъём нельзя установить в гнездо 6 pin. По этой причине многие производители блоков питания оснащают свои изделия вилками типа "6+2", которые позволяют отсоединять дополнительные два при необходимости, получая в итоге обычный 6-контактный разъём вместо 8-контактного. Такой разъём, разумеется, без проблем установится в гнездо 6 pin на плате.

Внимание! 8-контактный разъём дополнительного питания карт PCI-E и 8-контактный разъём питания CPU стандарта EPS12V используют близкие по конструкции вилки Molex Mini-Fit Jr. Эти вилки имеют разные ключи, но при определённом усилии может получиться подключить разъём EPS12V к гнезду на видеокарте, или наоборот, подключить разъём питания PCI-E к гнезду материнской плате EPS12V. В любом из этих сценариев контакт +12 В будет подключён напрямую к заземлению, что может привести к выходу из строя материнской платы, видеокарты или блока питания.

6-контактный разъём использует два контакта +12 В для обеспечения мощности до 75 Вт, в то время как коннектор 8 pin использует три контакта +12 В, обеспечивая до 150 Вт. Но согласно спецификации для разъёмов Molex, такой набор контактов позволяет обеспечивать большую мощность. Каждый контакт на разъёме питания PCI Express может держать ток до 8 А при использовании стандартных контактов - или больше, если применяются контакты HCS или Plus HCS. Если умножить пределы мощности контактов по спецификациям на их количество, можно определить возможности разъёма держать ток определённой мощности:

Максимальная мощность тока по разъёму дополнительного питания карты PCI-E
Тип разъёма Количество контактов +12V При использовании контактов контактов При использовании контактов HCS При использовании контактов Plus HCS
6-pin 2 192 Вт 264 Вт 288 Вт
8-pin 3 288 Вт 396 Вт 432 Вт

В 6-жильном разъёме ток рассчитан на два контакта +12 В, хотя большинство БП имеют по три таких контакта.

Стандартные контакты Molex рассчитаны на ток 8 А.

Контакты Molex HCS рассчитаны на ток 11 А.

Контакты Molex Plus HCS рассчитаны на ток 12 А.

Все значения указаны для связки 4-6 контактов Mini-Fit Jr. при использовании проводов 18-го калибра и стандартной температуре.

Таким образом, хотя по спецификации разъёмы рассчитаны на мощность 75 (6 pin) и 150 Вт (8 pin), при использовании стандартных контактов мощность может достигать, соответственно, 192 и 288 Вт. При использовании контактов HCS и Plus HCS вы можете получить ещё большую мощность.

Два разъёма дополнительного питания, о которых идёт речь, могут фигурировать в документации под названиями PCI Express Graphics (PEG), Scalable Link Interface (SLI) или CrossFire Power Connectors, так как они используются производительными графическими картами с интерфейсом PCI-E x16, которые могут работать в связке SLI или CrossFire. SLI и CrossFire - это режимы использования карт nVidia и AMD, позволяющие объединить карты в связку, используя вычислительные ресурсы каждой из них для увеличения производительности графической подсистемы. Каждая карта может потреблять сотни ватт, поэтому многие видеокарты класса hi-end имеют два или три разъёма дополнительного питания. Это означает, что большинство мощных

#Коннектор_питания_видеокарт
Не секрет, что современные модели видеокарт потребляют большое количество энергии. В зависимости от производителя, серии, назначения и даже конкретного экземпляра потребляемая мощность может меняться в пределах от нескольких десятков, до нескольких сотен Ватт. Где же взять такое количество энергии и при этом не обделить остальные компоненты вашей системы? Сейчас мы обо всем расскажем.
Питание для быстрой современной видеокарты может поступать из 3 источников:
Тип коннектора питания Обеспечиваемая им мощность
PCIe x16 75 Вт
6-pin 75 Вт
8-pin 150 Вт

Во первых, современные подключаются к разъему расширения PCIe x16, который питается от 24-контактного разъема и обеспечивает видеокарты мощностью до 75 Вт. Этого оказывается достаточно для начального и среднего уровня. Такие карты не имеют дополнительных разъемов питания и не сильно требовательны к блоку питания, и, как правило, обеспечивают относительно низкую производительность.

Разъем PCIe x16


24-pin разъем питания материнской платы
Во вторых, более мощные версии видеокарт могут иметь 2 типа разъемов питания: 6-пин и 8-пин, или оба сразу. Разъем 6-пин предоставляет видеокарте дополнительную мощность в 75 Вт, а 8-пин – в 150 Вт. Таким образом, максимальное энергопотребление видеокарты с 1 разъемом 8-пин и 1 разъемом 6-пин может достигать значения: 75+150+75 = 300Вт (конфигурации разъемов могут отличаться, в том числе и в большую сторону). Следует обратить внимание на следующий факт: для каждого дополнительного разъема питания на видеокарте должен обладать отдельным коннектором питания. Наличие дополнительных разъемов питания свидетельствует как о повышенном энергопотреблении видеокарты, так и о большей производительности (относительно видеокарт без дополнительных разъемов питания и в рамках одного-двух поколений). Кроме того, по наличию дополнительных разъемов питания можно приблизительно определить энергопотребление, на которое рассчитана. Важно помнить, что при наличии на видеокарте нескольких разъемов питания, для нормальной работоспособности компьютера необходимо к каждому коннектору подключить кабель питания. В противном случае компьютер либо не включится, либо видеокарта не будет работать со своей максимальной производительностью.

8-pin и 6-pin разъемы
В связи с этим нужно упомянуть, что существуют с разделенными линиями питания 12 В. Это означает, что каждый коннектор (6-пин и 8-пин) будет обслуживать своя линия питания. Подробнее об этом можно прочитать в.

Подводя итог – для соответствующего питания вашей видеокарты необходимо понять, какие разъемы питания она требует и какую максимальную мощность при этом потребляет. Учет этих факторов позволит вам избежать неприятной ситуации, при которой ваша система не сможет запуститься из-за недостатка мощности или отсутствия нужных коннекторов. Удачных покупок!

Если на видеокарте имеется такой разьем, то требуется к нему подключить дополнительное питание от БП.

Дополнительное питание подключается специальным кабелем-переходником:

6-пиновый разьем подключается к видеокарте, а два разьема, типа molex, подключаются к блоку питания.
К БП подключаются оба разьема.
Черный и коричневый земля, жёлтый +12 вольт.

Нужно учесть, что такие видеокарты требуют повышенной мощности БП и он должен быть не менее 350 Вт.

В современных блоках питания уже имеется разьем дополнительного питания видеокарты, в этом случае необходимости в переходниках нет.

В последнее время появились видеокарты к которым необходимо подключить не 6-pin разьем питания, а 8-pin.
Это связано с увеличением потребляемой мощности питания видеокартами.
У таких разьемов на два контакта «земля» больше, чем у 6-pin разьемов.

Если у вашего БП нет такого выходного коннектора, то нужно приобрести переходник 6-pin -> 8-pin, но обычно такой переходник идет в комплекте с видеокартой.

Подключать разьем 6-pin вместо 8-pin без переходника нельзя.

К видеокартам, имеющим два разьема дополнительного питания, нужно подключать оба разьема.

1,65 миллиона взломанных домашних компьютеров заняты майнингом

Лаборатория Касперского опубликовала результаты своего исследования, согласно которому в мире насчитывается 1,65 миллиона взломанных ПК, которые заняты добычей криптовалюты для хакеров.
При этом отмечается, что речь не идёт только о домашних машинах, но и о корпоративных серверах.

В лаборатории отметили, что наиболее популярными вредоносными добытчиками валют являются Zcash и Monero.
Наиболее популярной валютой является Bitcoin, однако его добыча слишком неэффективна на обычных компьютерах , в отличие от альтернативных валют.

«Основным эффектом для домашних компьютеров или инфраструктуры организации является снижение производительности», - заявил эксперт по безопасности Kaspersky Антон Иванов, - «Также некоторые майнеры могут загружать модули из инфраструктуры опасного действия, и эти модули могут содержать другой вредоносный код , такой как трояны».

В большинстве случаев майнер попадает на компьютер при помощи специально созданной зловредной программы, так называемого дроппера , главная функция которого - скрытно ставить другое ПО.
Такие программы обычно маскируются под пиратские версии лицензионных продуктов или под генераторы ключей активации к ним - что-нибудь в таком духе пользователи ищут, например, на файлообменниках и сознательно скачивают. Вот только иногда то, что они скачали, оказывается не совсем тем, что они хотели скачать.

После запуска скачанного файла на компьютер жертвы ставится собственно установщик, а он уже закачивает на диск майнер и специальную утилиту , маскирующую его в системе.
Также в комплекте с программой могут поставляться cервисы, которые обеспечивают его автозапуск и настраивают его работу.

От вредоносных программ-дропперов Kaspersky Internet Security защитит вас по умолчанию - просто убедитесь, что антивирус всегда включен, и такой зловред просто не попадет на ваш компьютер.

А вот майнеры, в отличие от дропперов - программы не зловредные.
Потому они входят в выделенную категорию Riskware - ПО, которое само по себе легально, но при этом может быть использовано в зловредных целях.
По умолчанию Kaspersky Internet Security не блокирует и не удаляет такие программы, поскольку пользователь мог установить их осознанно.

Но если хотите подстраховаться и уверены, что не собираетесь пользоваться майнерами и прочим ПО, которое входит в категорию Riskware, то вы всегда можете зайти в настройки защитного решения, найти там раздел Угрозы и обнаружение и поставить галочку напротив пункта Другие программы .

Если вы заняты майнингом для кого-то другого, вы можете получить огромные счета за электроэнергию, заметное замедление работы ПК и компонентов.

Процессорный разъём LGA 1151 для Intel Coffee Lake имеет различия

Выход процессоров Intel Coffee Lake вызвал бурю эмоций у пользователей и шквал обсуждений на различных тематических ресурсах, в основном из-за того, что они будут работать только с новыми материнскими платами , несмотря на уже давно используемое исполнение LGA 1151.

Выяснилась настоящая причина несовместимости.
Всё дело в том, что контакты на новых процессорах Intel расположены по другой схеме, нежели у процессоров Skylake и Kaby Lake, сообщает VideoCardz.

Intel добавила новым процессорам больше контактов Vss (земля) и Vcc (питание).
Первых ранее было 377, а теперь стало 391.
Вторых - 128 и 146, соответственно.
Общее число контактов не изменилось, и осталось равно 1151, а всё благодаря уменьшению количества резервных контактов (RSVD) с 46 до 25.

Компания сообщила – процессорам Core восьмого поколения потребовалась организации дополнительного и/или более стабильного питания.
Хотя компании было достаточно изменить название на LGA 1151v2, чтобы избежать «праведного гнева» со стороны некоторых пользователей, но она этого не сделала.

Точки доступа Wi-Fi в сельских населённых пунктах

Компания «Ростелеком» сообщает о резком росте востребованности беспроводных точек доступа в Интернет, построенных по проекту устранения цифрового неравенства в России.

Проект, о котором идёт речь, предусматривает создание точек Wi-Fi в населённых пунктах численностью от 250 до 500 человек.
Доступ в Сеть предоставляется на скорости не менее 10 Мбит/с.

В конце июля «Ростелеком» объявил об отмене платы за подключение к Интернету через такие хот-споты.
Сразу после этого востребованность услуги заметно выросла.
Количество интернет-сессий в точках доступа подскочило на 35%.
Общий объём интернет-трафика в точках Wi-Fi в августе впервые превысил 1 Пбайт, оказавшись на 27% больше, чем месяцем ранее.

По состоянию на 30 июня 2017 года универсальные услуги связи с использованием точек доступа Wi-Fi оказывались в 4690 населённых пунктах, что составляет 34% от общего плана (всего до конца 2019 года должны быть построены почти 14 тыс. точек).
Уже проложено 35 тыс. километров волоконно-оптических линий связи.

Разъёмы питания для периферийных устройств Кроме разъёмов для материнской платы, все блоки питания также оснащены различными дополнительными коннекторами, большинство из которых предназначено для...

Разъёмы питания для периферийных устройств Кроме разъёмов для материнской платы, все блоки питания также оснащены различными дополнительными коннекторами, большинство из которых предназначено для...

Стандартный источники питания работает от 220В, а также может иметь механический переключатель входного напряжения 110В или 220В AC (переменный ток). Компьютерный блок питания предназначен для преобразования переменного натяжения 220 вольт DC в постоянный ток +12 вольт, +5вольт, +3.3вольт, затем постоянный ток идет на питания компонентов компьютера. 3.3 и 5 вольт обычно используются в цифровых схем, а 12 вольт используется для запуска двигателей дисковода и на вентиляторы.

АТХ 20 и 24 Контактный главный Разъем кабеля питания

24-контактный 12-вольтовый разъем питания ATX может быть подключен только в одном направление в слот материнской плате. Если вы внимательно посмотрите на изображение в верхней части этой страницы, вы увидите, что контакты имеют уникальную форму, которая соответствует только одному направлению на материнской плате. Исходный стандарт ATX поддерживал 20-контактный разъем с очень похожей распиновкой, что и 24-контактный разъем, но выводы 11, 12, 23 и 24 пропущен. Это означает, что более новый 24-контактный источник питания полезен для системных плат, требующих больше мощности. На современных материнских платах может стоять всего 2 типа разъёма 20-контактный основной разъем питания или 24-контактный основной разъем питания.

Многие источники питания поставляются с 20+4 контактными фишками, который совместим с 20 и 24-контактами слотов питания материнских плат. В 20+4 кабель питания состоит из двух частей: 20-контактной, и 4-контактной фишки. Если вы разъедините две части отдельно, тогда можно подключить 20-контактный разъем, а если вы соедините две фишки 20+4 кабеля питания вместе, то у вас получится 24-контактный кабель питания, который может быть подключен к 24-контактному слоту питания материнской платы.

ATX 4-Контактный разъем питания

Molex 4-Контактный периферийный разъем кабеля питания

Четырех контактный периферийный силовой кабель. Он был использован для флоппи-дисков и жестких дисков и до сих пор очень широко используется. Вам не придется беспокоиться об установке это разъема, его нельзя установить неправильна. Люди часто используют термин «4-контактный Molex кабель питания» или «4-контактный Molex» для обозначения.

SATA 15 -Контактный кабель питания

SATA был введен, чтобы обновить интерфейс ATA (называемого также IDE) для более продвинутой конструкции. Интерфейс SATA включает как кабель для передачи данных и кабель питания. Силовой кабель заменяет старый 4-контактный периферийный кабель и добавляет поддержку для 3.3 вольт (если полностью реализованы).

8-Контактный EPS и +12 Вольт Разъем питания

Этот кабель изначально создавалась для рабочих станций для обеспечения 12 вольт многократного питания. Но так как времени прошло много процессоры требуют больше питания и 8-контактный кабель часто используется вместо 4-контактный 12 вольт кабель. Его часто называют «ЕРЅ12В» кабель.

4+4 Контактный EPS +12 Вольт Разъем питания

Материнские платы может быть с 4-контактный разъем или 8-контактный разъем 12 вольт. Многие источники питания оснащены 4+4-контактный 12 вольт кабель, который совместим с 4 и 8 контактами материки. А 4+4 кабель питания имеет два отдельных штыря 4 штук. Если вы соедините их вместе, 4+4 кабель питания, то у вас будет 8-контактный кабель питания, который может быть подключен к 8-контактный разъем. Если вы оставите две части отдельно, тогда вы можете подключить один из штекеров 4-контактный разъем материнской платы.

6-контактный разъем PCI Express (PCIe) силовой кабель Разъем

Этот кабель используется для предоставления дополнительных 12 вольт питания для PCI Express карты расширения. Этот разъем может обеспечить до 75 Вт питания PCI Express.

8-контактный разъем PCI Express (PCIe) силовой кабель разъем

Спецификации PCI Express версии 2.0 выпущена в январе 2007 года добавлена 8 контактный PCI Express с кабелем питания. Это просто 8-контактный версия 6-Контактный PCI Express с кабелем питания. Оба используются в основном для обеспечения дополнительного питания видеокарты. Старший 6-контактный версия официально предоставляет не более 75 Вт (хотя неофициально это, как правило, может дать значительно больше), а новый 8-контактный вариант обеспечивает максимум 150 Вт.

6+2(8) пин PCI Express (PCIe) силовой кабель разъем

Некоторые видеокарты имеют 6-контактный PCI Express с разъемами питания и другие 8-Контактный разъемы PCI Express. Многие источники питания поставляются с 6+2 PCI Экспресс силовой кабель, который совместим с обоими типами видеокарт. В 6+2 PCI Express силовой кабель состоит из двух частей: 6-контактный, а 2-штекерн. Если вы сложите вместе эти две части, то у вас будет полноценный 8-контактный PCI-Express разъем. Но если вы разделите разъём на две части, то вы можете подключить только 6-контактный.

Разъёмы питания CPU

Питание CPU поступает от устройства, называемого Voltage Regulator Module (VRM), который имеется в большинстве материнских плат. Данное устройство обеспечивает питанием процессор (как правило, через контакты на сокете процессора) и производит самокалибровку, чтобы подавать на процессор надлежащее напряжение. Конструкция модуля VRM позволяет ему питаться как от входящего напряжения +5 В, так и от напряжения +12 В.

Долгие годы использовался только +5 В, но, начиная с 2000 года, большинство VRM перешли на +12 В из-за более низких требований для работы с таким напряжением на входе. Кроме того, другие компоненты ПК также могут использовать напряжение +5 В, поступающий через общий контакт на гнезде материнской платы, в то время как на линию +12 В "повешены" только дисковые накопители (во всяком случае, так было до 2000 года). Использует ли VRM на вашей плате напряжение +5 В или +12 В, зависит от конкретной модели платы и конструкции регулятора напряжения. Многие современные VRM устроены таким образом, чтобы принимать на входе напряжения от +4 В до +26 В, так что конечную конфигурацию определяет уже производитель материнской платы.

Например, как-то в наши руки попала материнская плата FIC (First International Computer) SD-11, оснащённая регулятором напряжения Semtech SC1144ABCSW. Данная плата использует напряжение +5 В, преобразуя его в более низкое в соответствии с потребностями CPU. В большинстве материнских плат используются VRM двух производителей - Semtech либо Linear Technology. Вы можете посетить сайты данных компаний и более подробно изучить спецификации их чипов.

Материнская плата, о которой идёт речь, использовала процессор Athlon 1 ГГц Model 2 в версии со щелевым слотом (Slot A) и по спецификации требовала питания 65 Вт при номинальном напряжении 1,8 В. 65 Вт при напряжении 1,8 В соответствуют току 36,1 А. При использовании VRM со входящим напряжением +5 В мощности 65 Вт соответствует сила тока всего 13 А. Но такой расклад получается лишь при условии 100% КПД регулятора напряжения, что невозможно. Обычно же эффективность VRM составляет около 80%, таким образом, для обеспечения работы процессора вместе с регулятором напряжения сила тока должна быть примерно равна 16,25 А.

Если учесть, что другие потребители энергии на материнской плате также используют линию +5 В - помните, что карты ISA или PCI также используют это напряжение - можно убедиться, насколько легко можно перегрузить линии +5 В на блоке питания.

Хотя большинство конструктивных решений VRM на материнских платах унаследовано от процессоров Pentium III и Athlon/Duron, использующих регуляторы +5 В, большинство современных систем используют VRM, рассчитанные на напряжение +12 В. Связано это с тем, что более высокие напряжения снижают уровень тока. Мы можем убедиться в этом на примере AMD Athlon 1 ГГц, о которым уже упоминали выше:

Уровень тока в зависимости от входящего напряжения
Мощность Напряжение Сила тока Сила тока в ампера с учётом КПД регулятора напряжения 80%
65 Вт 1.8 В 36.1 А -
65 Вт 3.3 В 19.7 А 24.6 А
65 Вт 5.0 В 13.0 А 16.3 А
65 Вт 12.0 В 5.4 А 6.8 А

Как можно видеть, использование линии +12 В для питания чипа требует ток силой всего 5,4 А или же 6,8 А, с учетом эффективности VRM.

Таким образом, подключив модуль VRM на материнской плате к линии питания +12 В, мы могли бы извлечь немало пользы. Но, как вы уже знаете, спецификация ATX 2.03 предполагает лишь одну линию +12 В, которая передаётся через основной кабель питания материнской платы. Даже проживший недолгую жизнь вспомогательный 6-контактный коннектор был лишён контакта с напряжением +12 В, так что он не смог бы нам помочь. Ток силой более 8 А по одному проводу 18-го калибра от линии +12 В на блоке питания - это весьма действенный способ расплавить контакты разъёма ATX, которые по спецификации рассчитаны на ток не выше 6 А при использовании стандартных контактов Molex. Таким образом, требовалось принципиально иное решение.

Platform Compatibility Guide (PCG)

Процессор напрямую управляет силой тока, проходящей через контакт +12 В. Современные материнские платы разработаны таким образом, чтобы обеспечить поддержку как можно большего количества процессоров, однако, цепи VRM некоторых платах могут не обеспечивать достаточного питания для всех процессоров, которые могут быть установлены в сокет на материнской плате. Чтобы исключить потенциальные проблемы с совместимостью, которые могут привести к нестабильной работе ПК или даже выходу из строя отдельных компонентов, компания Intel разработала стандарт питания, называющийся Platform Compatibility Guide (PCG). PCG упоминается на большинстве боксовых процессоров Intel и материнских платах, выпускавшихся с 2004 по 2009 год. Он создавался для сборщиков ПК и системных интеграторов, чтобы донести до них информацию о том, какие требования предъявляет процессор к питанию, а также соответствует ли данным требованиям материнская плата.

PCG представляет собой двузначное либо трёхзначное обозначение (например, 05А), где первые две цифры означают год, когда был представлен продукт, а дополнительная третья буква соответствует сегменту рынка. Маркировки PCG, включающие третий знак А, соответствуют процессорам и материнским платам, относящимся к low-end решениям (требуют меньше энергии), в то время как буква B относится к процессорам и материнским платам, относящимся к сегменту high-end рынка (требуют больше энергии).

Материнские платы, которые поддерживают процессоры high-end класса, по умолчанию, также могут работать и с менее производительными процессорами, но не наоборот. Например, вы можете установить процессор с PCG маркировкой 05A в материнскую плату, имеющую маркировку 05B, но если вы попробуете установить процессор 05B в плату, имеющую маркировку 05A, то вполне можете столкнуться с нестабильной работы системы или иными, более тяжёлыми последствиями. Иными словами, всегда есть возможность установить менее производительный процессор в дорогую материнскую плату, но не наоборот.

Рекомендации к уровню питания по линии +12 В в соответствии с маркировкой Intel Platform Compatibility Guide (PCG)
Код PCG Год Сегмент рынка Потребление энергии CPU Постоянный ток по линии +12 В Пиковая сила тока по линии +12 В
04A 2004 Low-end 84 Вт 13 A 16.5 A
04B 2004 High-end 115 Вт 13 A 16.5 A
05A 2005 Low-end 95 Вт 13 A 16.5 A
05B 2005 High-end 130 Вт 16 A 19 A
06 2006 Все 65 Вт 8 A 13 A
08 2008 High-end 130 Вт 16 A 19 A
09A 2009 Low-end 65 Вт 8 A 13 A
09B 2009 High-end 95 Вт 13 A 16.5 A

Блок питания должен быть способен выдерживать пиковую нагрузку, как минимум, в течение 10 мс.

Блок питания, который соответствует требуемому минимуму по линии +12 В, может обеспечить стабильную работу системы.

4-контактный разъём питания процессора +12 В

Чтобы увеличить ток по линии +12 В, Intel создала новую спецификацию БП ATX12V. Это привело к появлению третьего разъёма питания, который получил название ATX +12 В и использовался для подведения дополнительного напряжения +12 В к материнской плате. Данный 4-контактный разъём питания является стандартным для всех материнских плат, соответствующих спецификации ATX12V, и содержит контакты Molex Mini-Fit Jr. с вилками типа "мама". Согласно спецификации, разъём соответствует стандарту Molex 39-01-2040, тип конектора - Molex 5556. Это тот же самый тип контактов, что используется в основном разъёме питания материнской платы ATX.

Данный разъём имеет два контакта +12 В, каждый из которых рассчитан на ток до 8 А (либо до 11 А при использовании контактов HCS). Это обеспечивает силу тока 16 А дополнительно к контакту на материнской плате, а в сумме оба разъёма обеспечивают ток до 22 А по линии +12 В. Расположение контактов данного разъёма изображено на следующей схеме:

Разъём +12 В питания процессора, фронтальный вид и компоновка контактов

Назначение контактов на разъёме +12 В представлено на следующей таблице:

4-контактный разъём +12 В для питания CPU
Контакт Сигнал Цвет Контакт Сигнал Цвет
3 +12 V Жёлтый 1 Gnd Чёрный
4 +12 V Жёлтый 2 Gnd Чёрный

Используя стандартные контакты Molex, каждый контакт в разъёме +12 В может проводить ток силой до 8 А, 11 А с контактами HCS, либо до 12 А с контактами Plus HCS. Даже при том, что в данном разъёме используются те же самые контакты, что и в основном, ток по этому разъёму может достигать более высоких значений, так как используется меньшее количество контактов. Умножив количество контактов на напряжение, можно определить предельную мощность тока по данному разъёму:

Стандартные контакты Molex рассчитаны на ток 8 А.

Контакты Molex HCS рассчитаны на ток 11 А.

Контакты Molex Plus HCS рассчитаны на ток 12 А.

Все значения указаны для связки 4-6 контактов Mini-Fit Jr. при использовании проводов 18-го калибра и стандартной температуре.

Таким образом, в случае использования стандартных контактов мощность может достигать 192 Вт, что, в большинстве случаев, достаточно даже для современных производительных CPU. Потребление большей мощности может привести к перегреву и оплавлению контактов, поэтому в случае использования более "прожорливых" моделей процессоров вилка +12 В для питания процессора должна включать контакты Molex HCS либо Plus HCS.

20-контактный основной разъём питания и коннектор питания процессора +12 В вместе обеспечивают максимальный уровень мощности тока 443 Вт (при использовании стандартных контактов). Важно заметить, что добавление разъёма +12 В позволяет задействовать полную мощность блока питания на 500 Вт, не рискуя столкнуться с перегревом или оплавлением контактов.

Переходник на разъём +12 В питания процессора

Если блок питания не имеет стандартного разъёма +12 В для питания процессора, а на материнской плате предусмотрено соответствующее гнездо, существует простой выход из проблемы - использовать переходник. С какими нюансами мы может столкнуться в таком случае?

Переходник подключается к разъёму для периферийных устройств, который имеется почти во всех БП. Проблема в данном случае заключается в том, что разъём для периферийных устройств имеет всего один контакт +12 В, а 4-контактный разъём питания CPU - два таких контакта. Таким образом, если переходник предполагает использование всего одного разъёма для периферийных устройств, используя его для обеспечения напряжения сразу на двух контактах разъёма +12 В для процессора, то мы в этом случае видим серьёзное несоответствие между требованиями к силе тока. Поскольку контакты на разъёме для периферийных устройств рассчитаны на ток только в 11 А, нагрузка, превышающая это значение, может привести к перегреву и оплавлению контактов на этом разъёме. Но 11 А - это ниже пиковых значений тока, на которые должны быть рассчитаны контакты разъёма в соответствии с рекомендациями Intel PCG. Это означает, что подобные переходники не соответствуют последним стандартам.

Мы произвели следующие расчёты: учитывая эффективность VRM на уровне 80%, для среднего по нынешним меркам процессора, потребляющего 105 Вт, уровень тока составит примерно 11 А, что является максимумам для периферийного разъёма питания. Многие современные процессоры имеют TDP свыше 105 Вт. Но мы бы не рекомендовали пользоваться переходниками, которые используют только один разъём для периферийных устройств, с процессорами, имеющими TDP свыше 75 Вт. Пример такого переходника приведён на следующем рисунке:

Переходник на разъём питания CPU +12 В с разъёма для питания периферийных устройств

8-контактный разъём питания процессора +12 V

В материнских платах high-end класса часто используется несколько VRM для питания процессора. Чтобы распределить нагрузку между дополнительными регуляторами напряжения, такие платы оснащены двумя гнёздами для 4-контактного разъёма +12 В, но физически они объединены в один 8-контактный коннектор, как показано на рисунке ниже. Данный тип разъёма был впервые представлен в спецификации EPS12V версии 1.6, вышедшей в 2000 году. Хотя изначально данная спецификация была ориентирована на файл-серверы, увеличившиеся запросы к питанию некоторых высокопроизводительных процессоров для настольных ПК привели к тому, что этот 8-контактный разъём появился в мире ПК.

8-контактный разъём питания CPU +12 В. Фронтальный вид и конфигурация контактов

Назначение контактов разъёма 8-pin CPU +12 В приводится в следующей таблице:

8-контактный разъём питания CPU +12 В
Цвет Сигнал Контакт Контакт Сигнал Цвет
Жёлтый +12 V 5 1 GND Чёрный
Жёлтый +12 V 6 2 GND Чёрный
Жёлтый +12 V 7 3 GND Чёрный
Жёлтый +12 V 8 4 GND Чёрный

Некоторые материнские платы, где используется 8-контактный разъём питания CPU, для обеспечения корректной работы должны получать напряжение на все контакты разъёма, в то время, как большинство материнских плат такого типа могут работать, даже если вы используете всего один 4-контактный разъём питания. В последнем случае, на гнезде материнской платы останется четыре свободных контакта. Но прежде чем запускать компьютер с такой конфигурацией разъёмов, необходимо ознакомиться с руководством пользователя материнской платы - скорее всего, там будет отражено, можно ли подключать один 4-контактный разъём питания к 8-жильному гнезду на плате, либо нет. Если вы используете процессор, который потребляет больше энергии, чем может обеспечить один 4-контактный разъём питания, вам, тем не менее, придётся найти БП, оснащённый 8-контактным разъёмом.

Посчастливилось мне приобрести видеокарту Nvidia GTX 780 вместо своей старенькой Nvidia GTX 560. Радость от покупки была не долгой, т.к. видеокарта отказалась влезать в мой корпус. Хотя эта проблема лечится быстро с помощью болгарки и прямых рук)))

Следующей и главной проблемой стало присутствие двух 8 pin разъёмов на видеокарте и их отсутствие на блоке питания. Блок у меня 700 Вт но выходит у него 2*6 pin.

Сначала обратимся к теории, что же это за 8-pin разъем? По сути это тот же 6-pin разъем только с добавлением двух дополнительных контактов “земли”. Это нужно, чтобы дать дополнительную мощность на видеокарту по шине 12V, что в свою очередь необходимо для мощных видеоадаптеров, а также для разгона и использования штатных технологий, таких как AMD OverDrive.

Почитав “умные” форумы, пришел к выводу, что, в принципе, использование дополнительных контактов не является обязательным, хотя и желательным.

При попытке запуска системы, видеоадаптер выдал ошибку о нехватке мощности, и отказал в запуске ПК. Стало ясно, что необходимо подключить восьми контактный разъем. В принципе, существуют переходники с 6 на 8 контактов, но во-первых они стоят денег, а во-вторых нужно ждать, пока их привезут, а поставить новую видюху “горело” прямо сейчас))).

Изучив предлагаемый переходник стало ясно, что два дополнительных контакта просто дублируются от имеющихся.

Также необходимо было заполучить коннектор для подключения в видеокарту. Для этой цели отлично подошел имеющийся восьми контактный переходник для питания процессора. Я просто отпилил нужные части, которые подходят в видеокарту.

Теперь нужно было подключить разъем к блоку питания. Можно было бы подсоединиться к 6 pin разъемам, но я не стал их трогать, а срезал один не используемый разъем питания SATA и взял оттуда два провода “земли”, а остальные заизолировал. И вот что получилось.

Loading...Loading...